Abstract

Despite the great success achieved by prevailing binary local descriptors, they are still suffering from two problems: 1) vulnerable to the geometric transformations; 2) lack of an effective treatment to the highly-correlated bits that are generated by directly applying the scheme of image hashing. To tackle both limitations, we propose an unsupervised Transformation-invariant Binary Local Descriptor learning method (TBLD). Specifically, the transformation invariance of binary local descriptors is ensured by projecting the original patches and their transformed counterparts into an identical high-dimensional feature space and an identical low-dimensional descriptor space simultaneously. Meanwhile, it enforces the dissimilar image patches to have distinctive binary local descriptors. Moreover, to reduce high correlations between bits, we propose a bottom-up learning strategy, termed Adversarial Constraint Module, where low-coupling binary codes are introduced externally to guide the learning of binary local descriptors. With the aid of the Wasserstein loss, the framework is optimized to encourage the distribution of the generated binary local descriptors to mimic that of the introduced low-coupling binary codes, eventually making the former more low-coupling. Experimental results on three benchmark datasets well demonstrate the superiority of the proposed method over the state-of-the-art methods. The project page is available at https://github.com/yoqim/TBLD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.