Abstract

To describe trans-dimensional observations in sample spaces of different dimensions, we propose a probabilistic model, called the trans-dimensional random field (TRF) by explicitly mixing a collection of random fields. In the framework of stochastic approximation (SA), we develop an effective training algorithm, called augmented SA, which jointly estimates the model parameters and normalizing constants while using trans-dimensional mixture sampling to generate observations of different dimensions. Furthermore, we introduce several statistical and computational techniques to improve the convergence of the training algorithm and reduce computational cost, which together enable us to successfully train TRF models on large datasets. The new model and training algorithm are thoroughly evaluated in a number of experiments. The word morphology experiment provides a benchmark test to study the convergence of the training algorithm and to compare with other algorithms, because log-likelihoods and gradients can be exactly calculated in this experiment. For language modeling, our experiments demonstrate the superiority of the TRF approach in being computationally more efficient in computing data probabilities by avoiding local normalization and being able to flexibly integrate a richer set of features, when compared with n-gram models and neural network models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.