Abstract

Pluripotent stem cells (PSCs) are widely recognized as one of the most promising types of stem cells for applications in regenerative medicine, tissue engineering, disease modeling, and drug screening. This is due to their unique ability to differentiate into cells from all three germ layers and their capacity for indefinite self-renewal. Initially, PSCs were cultured using animal feeder cells, but these systems presented several limitations, particularly in terms of Good Manufacturing Practices (GMP) regulations. As a result, feeder-free systems were introduced as a safer alternative. However, the precise mechanisms by which feeder cells support pluripotency are not fully understood. More importantly, it has been observed that some aspects of the need for feeder cells like the optimal density and cell type can vary depending on conditions such as the developmental stage of the PSCs, phases of the culture protocol, the method used in culture for induction of pluripotency, and intrinsic variability of PSCs. Thus, gaining a better understanding of the divergent roles and necessity of feeder cells in various conditions would lead to the development of condition-specific defined feeder-free systems that resolve the failure of current feeder-free systems in some conditions. Therefore, this review aims to explore considerable feeder-related issues that can lead to the development of condition-specific feeder-free systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call