Abstract
We formalize a model for supervised learning of action strategies in dynamic stochastic domains and show that PAC-learning results on Occam algorithms hold in this model as well. We then identify a class of rule-based action strategies for which polynomial time learning is possible. The representation of strategies is a generalization of decision listss strategies include rules with existentially quantified conditions, simple recursive predicates, and small internal state, but are syntactically restricted. We also study the learnability of hierarchically composed strategies where a subroutine already acquired can be used as a basic action in a higher level strategy. We prove some positive results in this setting, but also show that in some cases the hierarchical learning problem is computationally hard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.