Abstract

Recently, there is a growing attention on applying deep reinforcement learning (DRL) to solve the 3-D bin packing problem (3-D BPP). However, due to the relatively less informative yet computationally heavy encoder, and considerably large action space inherent to the 3-D BPP, existing DRL methods are only able to handle up to 50 boxes. In this article, we propose to alleviate this issue via a DRL agent, which sequentially addresses three subtasks of sequence, orientation, and position, respectively. Specifically, we exploit a multimodal encoder, where a sparse attention subencoder embeds the box state to mitigate the computation while learning the packing policy, and a convolutional neural network subencoder embeds the view state to produce auxiliary spatial representation. We also leverage an action representation learning in the decoder to cope with the large action space of the position subtask. Besides, we integrate the proposed DRL agent into constraint programming (CP) to further improve the solution quality iteratively by exploiting the powerful search framework in CP. The experiments show that both the sole DRL and hybrid methods enable the agent to solve large-scale instances of 120 boxes or more. Moreover, they both could deliver superior performance against the baselines on instances of various scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.