Abstract

For power grid operations, a large body of research focuses on using generation redispatching, load shedding or demand side management flexibilities. However, a less costly and potentially more flexible option would be grid topology reconfiguration, as already partially exploited by Coreso (European RSC) and RTE (French TSO) operations. Beyond previous work on branch switching, bus reconfigurations are a broader class of actions and could provide some substantial benefits to route electricity and optimize the grid capacity to keep it within safety margins. Because of its non-linear and combinatorial nature, no existing optimal power flow solver can yet tackle this problem. We here propose a new framework to learn topology controllers through imitation and reinforcement learning. We present the design and the results of the first “Learning to Run a Power Network” challenge released with this framework. We finally develop a method providing performance upper-bounds (oracle), which highlights remaining unsolved challenges and suggests future directions of improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.