Abstract
This paper considers networks with a reconfigurable topology with so called 60 GHz dynamic links that can be activated or disabled over time. A fundamental problem is to jointly determine which 60 GHz dynamic links are active and the route chosen by source nodes over time. To this end, this paper outlines a hierarchical deep reinforcement learning solution that can be used to compute the optimal policy that determines for each time slot (i) active dynamic links, and (ii) the route used by each source–destination pair. The results show that the proposed approach results in a maximum average queue length that is 80% shorter than non-learning methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.