Abstract
Web search ranking functions are typically learned to rank search results based on features of individual documents, i.e., pointwise features. Hence, the rich relationships among documents, which contain multiple types of useful information, are either totally ignored or just explored very limitedly. In this paper, we propose to explore multiple pairwise relationships between documents in a learning setting to rerank search results. In particular, we use a set of pairwise features to capture various kinds of pairwise relationships and design two machine learned re-ranking methods to effectively combine these features with a base ranking function: a pairwise comparison method and a pairwise function decomposition method. Furthermore, we propose several schemes to estimate the potential gains of our re-ranking methods on each query and selectively apply them to queries with high confidence. Our experiments on a large scale commercial search engine editorial data set show that considering multiple pairwise relationships is quite beneficial and our proposed methods can achieve significant gain over methods which only consider pointwise features or a single type of pairwise relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.