Abstract
We extend the formats of explanations in interpretable NLP with the proposed entity-centric reasoning chains for multi-hop question answering. We also propose a cooperative game approach to learn to recover such explanations from weakly supervised signals, i.e., the question-answer pairs. We evaluate our task and method via newly created benchmarks based on two multi-hop datasets, HotpotQA and MedHop; and hand-labeled reasoning chains for the latter. The experiments demonstrate the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Canadian Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.