Abstract

Dramatic improvements in sensor and image acquisition technology have created a demand for automated tools that can aid in the analysis of large image databases. We describe the development of JARtool, a trainable software system that learns to recognize volcanoes in a large data set of Venusian imagery. A machine learning approach is used because it is much easier for geologists to identify examples of volcanoes in the imagery than it is to specify domain knowledge as a set of pixel-level constraints. This approach can also provide portability to other domains without the need for explicit reprogramming; the user simply supplies the system with a new set of training examples. We show how the development of such a system requires a completely different set of skills than are required for applying machine learning to “toy world” domains. This paper discusses important aspects of the application process not commonly encountered in the “toy world,” including obtaining labeled training data, the difficulties of working with pixel data, and the automatic extraction of higher-level features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.