Abstract

Learning a similarity function between pairs of objects is at the core of learning to rank approaches. In information retrieval tasks we typically deal with query-document pairs, in question answering -- question-answer pairs. However, before learning can take place, such pairs needs to be mapped from the original space of symbolic words into some feature space encoding various aspects of their relatedness, e.g. lexical, syntactic and semantic. Feature engineering is often a laborious task and may require external knowledge sources that are not always available or difficult to obtain. Recently, deep learning approaches have gained a lot of attention from the research community and industry for their ability to automatically learn optimal feature representation for a given task, while claiming state-of-the-art performance in many tasks in computer vision, speech recognition and natural language processing. In this paper, we present a convolutional neural network architecture for reranking pairs of short texts, where we learn the optimal representation of text pairs and a similarity function to relate them in a supervised way from the available training data. Our network takes only words in the input, thus requiring minimal preprocessing. In particular, we consider the task of reranking short text pairs where elements of the pair are sentences. We test our deep learning system on two popular retrieval tasks from TREC: Question Answering and Microblog Retrieval. Our model demonstrates strong performance on the first task beating previous state-of-the-art systems by about 3\% absolute points in both MAP and MRR and shows comparable results on tweet reranking, while enjoying the benefits of no manual feature engineering and no additional syntactic parsers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call