Abstract

Many real-world data sets are modeled as entity relationship graphs or heterogeneous information networks. In these graphs, nodes represent entities and edges mimic relationships. ObjectRank extends the well-known PageRank authority flow–based ranking method to entity relationship graphs using an authority flow weight vector (W). The vector W assigns a different authority flow–based importance (weight) to each edge type based on domain knowledge or personalization. In this paper, our contribution is a framework for Learning to Rank in entity relationship graphs to learn W, in the context of authority flow. We show that the problem is similar to learning a recursive scoring function. We present a two-phase iterative solution and multiple variants of learning. In pointwise learning, we learn W, and hence the scoring function, from the scores of a sample of nodes. In pairwise learning, we learn W from given preferences for pairs of nodes. To demonstrate our contribution in a real setting, we apply our framework to learn the rank, with high accuracy, for a real-world challenge of predicting future citations in a bibliographic archive—that is, the FutureRank score. Our extensive experiments show that with a small amount of training data, and a limited number of iterations, our Learning to Rank approach learns W with high accuracy. Learning works well with pairwise training data in large graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.