Abstract

Software vulnerabilities pose significant security risks to the host computing system. Faced with continuous disclosure of software vulnerabilities, system administrators must prioritize their efforts, triaging the most critical vulnerabilities to address first. Many vulnerability scoring systems have been proposed, but they all require expert knowledge to determine intricate vulnerability metrics. In this paper, we propose a deep learning approach to predict multi-class severity of software vulnerability using only vulnerability description. Compared with intricate vulnerability metrics, vulnerability description is the surface level information about how a vulnerability works. To exploit vulnerability description for predicting vulnerability severity, discriminative features of vulnerability description have to be defined. This is a challenging task due to the diversity of software vulnerabilities and the richness of vulnerability descriptions. Instead of relying on manual feature engineering, our approach uses word embeddings and a one-layer shallow Convolutional Neural Network (CNN) to automatically capture discriminative word and sentence features of vulnerability descriptions for predicting vulnerability severity. We exploit large amounts of vulnerability data from the Common Vulnerabilities and Exposures (CVE) database to train and test our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.