Abstract

This simulation study investigated whether a 4-degrees-of-freedom (DOF) arm could strike a target with a 50-DOF whip using a motion profile similar to discrete human movements. The interactive dynamics of the multi-joint arm was modeled as a constant joint-space mechanical impedance, with values derived from experimental measurement. Targets at various locations could be hit with a single maximally smooth motion in joint-space coordinates. The arm movements that hit the targets were identified with fewer than 250 iterations. The optimal actions were essentially planar arm motions in extrinsic task-space coordinates, predominantly oriented along the most compliant direction of both task-space and joint-space mechanical impedances. Of the optimal movement parameters, striking a target was most sensitive to movement duration. This result suggests that the elementary actions observed in human motor behavior may support efficient motor control in interaction with a dynamically complex object.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.