Abstract
Variational quantum algorithms (VQAs) use classical computers as the quantum outer loop optimizer and update the circuit parameters to obtain an approximate ground state. In this article, we present a meta-learning variational quantum algorithm (meta-VQA) by recurrent unit, which uses a technique called "meta-learner." Motivated by the hybrid quantum-classical algorithms, we train classical recurrent units to assist quantum computing, learning to find approximate optima in the parameter landscape. Here, aiming to reduce the sampling number more efficiently, we use the quantum stochastic gradient descent method and introduce the adaptive learning rate. Finally, we deploy on the TensorFlow Quantum processor within approximate quantum optimization for the Ising model and variational quantum eigensolver for molecular hydrogen (H2), lithium hydride (LiH), and helium hydride cation (HeH+). Our algorithm can be expanded to larger system sizes and problem instances, which have higher performance on near-term processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.