Abstract

Betweenness centrality (BC) is a widely used centrality measures for network analysis, which seeks to describe the importance of nodes in a network in terms of the fraction of shortest paths that pass through them. It is key to many valuable applications, including community detection and network dismantling. Computing BC scores on large networks is computationally challenging due to its high time complexity. Many sampling-based approximation algorithms have been proposed to speed up the estimation of BC. However, these methods still need considerable long running time on large-scale networks, and their results are sensitive to even small perturbation to the networks. In this paper, we focus on the efficient identification of top-k nodes with highest BC in a graph, which is an essential task to many network applications. Different from previous heuristic methods, we turn this task into a learning problem and design an encoder-decoder based framework as a solution. Specifically, the encoder leverages the network structure to represent each node as an embedding vector, which captures the important structural information of the node. The decoder transforms each embedding vector into a scalar, which identifies the relative rank of a node in terms of its BC. We use the pairwise ranking loss to train the model to identify the orders of nodes regarding their BC. By training on small-scale networks, the model is capable of assigning relative BC scores to nodes for much larger networks, and thus identifying the highly-ranked nodes. Experiments on both synthetic and real-world networks demonstrate that, compared to existing baselines, our model drastically speeds up the prediction without noticeable sacrifice in accuracy, and even outperforms the state-of-the-arts in terms of accuracy on several large real-world networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.