Abstract
Hashing techniques have been widely applied for large scale similarity search problems due to the computational and memory efficiency.However, most existing hashing methods assume data examples are independently and identically distributed.But there often exists various additional dependency/structure information between data examplesin many real world applications. Ignoring this structure information may limit theperformance of existing hashing algorithms.This paper explores the research problemof learning to Hash on Structured Data (HSD) and formulates anovel framework that considers additional structure information.In particular, the hashing function is learned in a unified learning framework by simultaneously ensuring the structural consistency and preserving the similarities between data examples.An iterative gradient descent algorithm is designed as the optimization procedure. Furthermore, we improve the effectiveness of hashing function through orthogonal transformation by minimizing the quantization error.Experimentalresults on two datasets clearly demonstrate the advantages ofthe proposed method over several state-of-the-art hashing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.