Abstract
Search tasks, comprising a series of search queries serving the same information need, have recently been recognized as an accurate atomic unit for modeling user search intent. Most prior research in this area has focused on short-term search tasks within a single search session, and heavily depend on human annotations for supervised classification model learning. In this work, we target the identification of long-term, or cross-session, search tasks (transcending session boundaries) by investigating inter-query dependencies learned from users' searching behaviors. A semi-supervised clustering model is proposed based on the latent structural SVM framework, and a set of effective automatic annotation rules are proposed as weak supervision to release the burden of manual annotation. Experimental results based on a large-scale search log collected from Bing.com confirms the effectiveness of the proposed model in identifying cross-session search tasks and the utility of the introduced weak supervision signals. Our learned model enables a more comprehensive understanding of users' search behaviors via search logs and facilitates the development of dedicated search-engine support for long-term tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.