Abstract

Knowledge based question answering (KBQA) has attracted much attention from both academia and industry in the field of Artificial Intelligence. However, many existing knowledge bases (KBs) are built by static triples. It is hard to answer user questions with different conditions, which will lead to significant answer variances in questions with similar intent. In this work, we propose to extract conditional knowledge base (CKB) from user question-answer pairs for answering user questions with different conditions through dialogue. Given a subject, we first learn user question patterns and conditions. Then we propose an embedding based co-clustering algorithm to simultaneously group the patterns and conditions by leveraging the answers as supervisor information. After that, we extract the answers to questions conditioned on both question pattern clusters and condition clusters as a CKB. As a result, when users ask a question without clearly specifying the conditions, we use dialogues in natural language to chat with users for question specification and answer retrieval. Experiments on real question answering (QA) data show that the dialogue model using automatically extracted CKB can more accurately answer user questions and significantly improve user satisfaction for questions with missing conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.