Abstract

Artificial neural networks together with associated computational libraries provide a powerful framework for constructing both classification and regression algorithms. In this paper we use neural networks to design linear and non-linear discrete differential operators. We show that neural network based operators can be used to construct stable discretizations of initial boundary-value problems by ensuring that the operators satisfy a discrete analogue of integration-by-parts known as summation-by-parts. Our neural network approach with linear activation functions is compared and contrasted with a more traditional linear algebra approach. An application to overlapping grids is explored. The strategy developed in this work opens the door for constructing stable differential operators on general meshes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.