Abstract
Appearance-based estimation of grasp affordances is desirable when 3-D scans become unreliable due to clutter or material properties. We develop a general framework for estimating grasp affordances from 2-D sources, including local texture-like measures as well as object-category measures that capture previously learned grasp strategies. Local approaches to estimating grasp positions have been shown to be effective in real-world scenarios, but are unable to impart object-level biases and can be prone to false positives. We describe how global cues can be used to compute continuous pose estimates and corresponding grasp point locations, using a max-margin optimization for category-level continuous pose regression. We provide a novel dataset to evaluate visual grasp affordance estimation; on this dataset we show that a fused method outperforms either local or global methods alone, and that continuous pose estimation improves over discrete output models. Finally, we demonstrate our autonomous object detection and grasping system on the Willow Garage PR2 robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.