Abstract

In this paper the control of a periodically kicked mechanical rotor without gravity in the presence of noise is investigated. In recent work it was demonstrated that this system possesses many competing attracting states and thus shows the characteristics of a complex multistable system. We demonstrate that it is possible to stabilize the system at a desired attracting state even in the presence of high noise level. The control method is based on a recently developed algorithm [S. Gadaleta and G. Dangelmayr, Chaos 9, 775 (1999)] for the control of chaotic systems and applies reinforcement learning to find a global optimal control policy directing the system from any initial state towards the desired state in a minimum number of iterations. Being data-based, the method does not require any information about governing dynamical equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.