Abstract

We study emergent communication between speaker and listener recurrent neural-network agents that are tasked to cooperatively construct a blocks-world target image sampled from a generative grammar of blocks configurations. The speaker receives the target image and learns to emit a sequence of discrete symbols from a fixed vocabulary. The listener learns to construct a blocks-world image by choosing block placement actions as a function of the speaker’s full utterance and the image of the ongoing construction. Our contributions are (a) the introduction of a task domain for studying emergent communication that is both challenging and affords useful analyses of the emergent protocols; (b) an empirical comparison of the interpolation and extrapolation performance of training via supervised, (contextual) Bandit, and reinforcement learning; and (c) evidence for the emergence of interesting linguistic properties in the RL agent protocol that are distinct from the other two.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.