Abstract
We study emergent communication between speaker and listener recurrent neural-network agents that are tasked to cooperatively construct a blocks-world target image sampled from a generative grammar of blocks configurations. The speaker receives the target image and learns to emit a sequence of discrete symbols from a fixed vocabulary. The listener learns to construct a blocks-world image by choosing block placement actions as a function of the speaker’s full utterance and the image of the ongoing construction. Our contributions are (a) the introduction of a task domain for studying emergent communication that is both challenging and affords useful analyses of the emergent protocols; (b) an empirical comparison of the interpolation and extrapolation performance of training via supervised, (contextual) Bandit, and reinforcement learning; and (c) evidence for the emergence of interesting linguistic properties in the RL agent protocol that are distinct from the other two.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.