Abstract

Face clustering is an essential tool for exploiting the unlabeled face data, and has a wide range of applications including face annotation and retrieval. Recent works show that supervised clustering can result in noticeable performance gain. However, they usually involve heuristic steps and require numerous overlapped subgraphs, severely restricting their accuracy and efficiency. In this paper, we propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs. Instead, we transform the clustering problem into two sub-problems. Specifically, two graph convolutional networks, named GCN-V and GCN-E, are designed to estimate the confidence of vertices and the connectivity of edges, respectively. With the vertex confidence and edge connectivity, we can naturally organize more relevant vertices on the affinity graph and group them into clusters. Experiments on two large-scale benchmarks show that our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.