Abstract

Human observers are the ultimate receivers and evaluators of the image visual information and have powerful perception ability of visual quality with short-term global perception and long-term regional observation. Thus, it is natural to design an image quality assessment (IQA) computational model to act like an observer for accurately predicting the human perception of image quality. Inspired by this, here, we propose a novel observer-like network (OLN) to perform IQA by jointly considering the global glimpsing information and local scanning information. Specifically, the OLN consists of a global distortion perception (GDP) module and a local distortion observation (LDO) module. The GDP module is designed to mimic the observer's global perception of image quality through performing classification of images' distortion categories and levels. Simultaneously, to simulate the human local observation behavior, the LDO module attempts to gather the long-term regional observation information of the distorted images by continuously tracing the human scanpath in the observer-like scanning manner. By leveraging the bilinear pooling layer to collaborate the short-term global perception with the long-term regional observation, our network precisely predicts the quality scores of distorted images, such as human observers. Comprehensive experiments on the public datasets powerfully demonstrate that the proposed OLN achieves state-of-the-art performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call