Abstract

Learning methods based on dynamic programming (DP) are receiving increasing attention in artificial intelligence. Researchers have argued that DP provides the appropriate basis for compiling planning results into reactive strategies for real-time control, as well as for learning such strategies when the system being controlled is incompletely known. We introduce an algorithm based on DP, which we call Real-Time DP (RTDP), by which an embedded system can improve its performance with experience. RTDP generalizes Korf's Learning-Real-Time-A* algorithm to problems involving uncertainty. We invoke results from the theory of asynchronous DP to prove that RTDP achieves optimal behavior in several different classes of problems. We also use the theory of asynchronous DP to illuminate aspects of other DP-based reinforcement learning methods such as Watkins' Q-Learning algorithm. A secondary aim of this article is to provide a bridge between AI research on real-time planning and learning and relevant concepts and algorithms from control theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.