Abstract

Cross-situational learning is a mechanism for learning the meaning of words across multiple exposures, despite exposure-by-exposure uncertainty as to a word's true meaning. Doubts have been expressed regarding the plausibility of cross-situational learning as a mechanism for learning human-scale lexicons in reasonable timescales under the levels of referential uncertainty likely to confront real word learners. We demonstrate mathematically that cross-situational learning facilitates the acquisition of large vocabularies despite significant levels of referential uncertainty at each exposure, and we provide estimates of lexicon learning times for several cross-situational learning strategies. This model suggests that cross-situational word learning cannot be ruled out on the basis that it predicts unreasonably long lexicon learning times. More generally, these results indicate that there is no necessary link between the ability to learn individual words rapidly and the capacity to acquire a large lexicon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.