Abstract

Supervised learning frequently boils down to determining hidden and bright parameters in a parameterized hypothesis space based on finite input-output samples. The hidden parameters determine the nonlinear mechanism of an estimator, while the bright parameters characterize the linear mechanism. In a traditional learning paradigm, hidden and bright parameters are not distinguished and trained simultaneously in one learning process. Such a one-stage learning (OSL) brings a benefit of theoretical analysis but suffers from the high computational burden. In this paper, we propose a two-stage learning scheme, learning through deterministic assignment of hidden parameters (LtDaHPs), suggesting to deterministically generate the hidden parameters by using minimal Riesz energy points on a sphere and equally spaced points in an interval. We theoretically show that with such a deterministic assignment of hidden parameters, LtDaHP with a neural network realization almost shares the same generalization performance with that of OSL. Then, LtDaHP provides an effective way to overcome the high computational burden of OSL. We present a series of simulations and application examples to support the outperformance of LtDaHP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.