Abstract

AbstractIn forensic science, the rare type match problem arises when the matching characteristic from the suspect and the crime scene is not in the reference database; hence, it is difficult to evaluate the likelihood ratio that compares the defense and prosecution hypotheses. A recent solution consists of modeling the ordered population probabilities according to the two‐parameter Poisson–Dirichlet distribution, which is a well‐known Bayesian nonparametric prior, and plugging the maximum likelihood estimates of the parameters into the likelihood ratio. We demonstrate that this approximation produces a systematic bias that fully Bayesian inference avoids. Motivated by this forensic application, we consider the need to learn the posterior distribution of the parameters that governs the two‐parameter Poisson–Dirichlet using two sampling methods: Markov Chain Monte Carlo and approximate Bayesian computation. These methods are evaluated in terms of accuracy and efficiency. Finally, we compare the likelihood ratio that is obtained by our proposal with the existing solution using a database of Y‐chromosome haplotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.