Abstract

Reinforcement learning (RL) is thought to underlie the acquisition of vocal skills like birdsong and speech, where sounding like one's "tutor" is rewarding. However, what RL strategy generates the rich sound inventories for song or speech? We find that the standard actor-critic model of birdsong learning fails to explain juvenile zebra finches' efficient learning of multiple syllables. However, when we replace a single actor with multiple independent actors that jointly maximize a common intrinsic reward, then birds' empirical learning trajectories are accurately reproduced. The influence of each actor (syllable) on the magnitude of global reward is competitively determined by its acoustic similarity to target syllables. This leads to each actor matching the target it is closest to and, occasionally, to the competitive exclusion of an actor from the learning process (i.e., the learned song). We propose that a competitive-cooperative multi-actor RL (MARL) algorithm is key for the efficient learning of the action inventory of a complex skill.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.