Abstract

Within influenza virus infected cells, viral genomic RNA are selectively packed into progeny virions, which predominantly contain a single copy of 8 viral RNA segments. Intersegmental RNA-RNA interactions are thought to mediate selective packaging of each viral ribonucleoprotein complex (vRNP). Clear evidence of a specific interaction network culminating in the full genomic set has yet to be identified. Using multi-color fluorescence in situ hybridization to visualize four vRNP segments within a single cell, we developed image-based models of vRNP-vRNP spatial dependence. These models were used to construct likely sequences of vRNP associations resulting in the full genomic set. Our results support the notion that selective packaging occurs during cytoplasmic transport and identifies the formation of multiple distinct vRNP sub-complexes that likely form as intermediate steps toward full genomic inclusion into a progeny virion. The methods employed demonstrate a statistically driven, model based approach applicable to other interaction and assembly problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.