Abstract
In this paper we compare different levels of supervision for learning the morphology of the indigenous South African language Zulu. After a preliminary analysis of the Zulu data used for our experiments, we concentrate on supervised, semi-supervised and unsupervised approaches comparing strengths and weaknesses of each method. The challenges we face are limited data availability and data sparsity in connection with morphological analysis of indigenous languages. At the end of the paper we draw conclusions for our future work towards a morphological analyzer for Zulu.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.