Abstract

Task-based measures of image quality (IQ) quantify the ability of an observer to perform a specific task. Such measures are commonly employed for assessing and optimizing medical imaging systems. In binary signal detection tasks, the Bayesian ideal observer (IO) sets an upper performance limit. However, the IO test statistic is generally intractable to compute when the log-likelihood ratio depends non-linearly on the measurement data. In such cases, the Hotelling observer (HO), which is the optimal linear observer, can be employed. However, traditional implementations of the HO require estimation and inversion of covariance matrices; for large images this can be computationally burdensome or even intractable. In this work, we describe a novel supervised learning- based method that employs artificial neural networks (ANNs) for estimating the HO test statistic and does not require estimation or inversion of covariance matrices. A signal-known-exactly and background-known-exactly (SKE/BKE) signal detection task is considered. The receiver operating characteristic (ROC) curve and Hotelling template corresponding to the proposed method are compared to the corresponding analytical solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.