Abstract
AbstractIn order to proceed along an action sequence, an autonomous agent has to recognize that the intended final condition of the previous action has been achieved. In previous work, we have shown how a sequence of actions can be generated by an embodied agent using a neural-dynamic architecture for behavioral organization, in which each action has an intention and condition of satisfaction. These components are represented by dynamic neural fields, and are coupled to motors and sensors of the robotic agent.Here,we demonstratehowthemappings between intended actions and their resulting conditions may be learned, rather than pre-wired.We use reward-gated associative learning, in which, over many instances of externally validated goal achievement, the conditions that are expected to result with goal achievement are learned. After learning, the external reward is not needed to recognize that the expected outcome has been achieved. This method was implemented, using dynamic neural fields, and tested on a real-world E-Puck mobile robot and a simulated NAO humanoid robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.