Abstract
A neural network texture classification method is proposed in this paper. The approach is introduced as a generalization of the multichannel filtering method. Instead of using a general filter bank, a neural network is trained to find a minimal set of specific filters, so that both the feature extraction and classification tasks are performed by the same unified network. The authors compute the error rates for different network parameters, and show the convergence speed of training and node pruning algorithms. The proposed method is demonstrated in several texture classification experiments. It is successfully applied in the tasks of locating barcodes in the images and segmenting a printed page into text, graphics, and background. Compared with the traditional multichannel filtering method, the neural network approach allows one to perform the same texture classification or segmentation task more efficiently. Extensions of the method, as well as its limitations, are discussed in the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.