Abstract
Fake news can rapidly spread through internet users. Approaches proposed in the literature for content classification usually learn models considering textual and contextual features from real and fake news to minimize the spread of disinformation. One of the prominent approaches to detect fake news is One-Class Learning (OCL), as it minimizes the data labeling effort, requiring only the labeling of fake news documents. The performance of these algorithms depends on the structured representation of the documents used in the learning process. Generally, a textual-based unimodal representation is used, such as bag-of-words or representations based on linguistic categories. We propose MVAE-FakeNews, a multimodal representation method to detect fake news in OCL. The proposed approach uses a Multimodal Variational Autoencoder, learns a new representation from the combination of two modalities considered promising for fake news detection: text embeddings and topic information. In the experiments, we used three datasets considering Portuguese and English languages. Results show that the MVAE-FakeNews obtained a better F1-Score for the class of interest, outperforming another nine methods in ten of twelve evaluated scenarios. MVAE-FakeNews presented a better average ranking and statistical difference from other representation models. The proposed method proved to be promising to represent the texts in the OCL scenario to detect fake news.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.