Abstract

Recently, low-rank representation (LRR) methods have been widely applied for hyperspectral anomaly detection, due to their potentials in separating the backgrounds and anomalies. However, existing LRR models generally convert 3-D hyperspectral images (HSIs) into 2-D matrices, inevitably leading to the destruction of intrinsic 3-D structure properties in HSIs. To this end, we propose a novel tensor low-rank and sparse representation (TLRSR) method for hyperspectral anomaly detection. A 3-D TLR model is expanded to separate the LR background part represented by a tensorial background dictionary and corresponding coefficients. This representation characterizes the multiple subspace property of the complex LR background. Based on the weighted tensor nuclear norm and the LF,1 sparse norm, a dictionary is designed to make its atoms more relevant to the background. Moreover, a principal component analysis (PCA) method can be assigned as one preprocessing step to exact a subset of HSI bands, retaining enough the HSI object information and reducing computational time of the postprocessing tensorial operations. The proposed model is efficiently solved by the well-designed alternating direction method of multipliers (ADMMs). A comparison with the existing algorithms via experiments establishes the competitiveness of the proposed method with the state-of-the-art competitors in the hyperspectral anomaly detection task.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.