Abstract

Discriminant correlation filter-based tracking approaches, which adopt a circular shift operator on the tracking target object (the only accurate positive sample) to obtain training data and rely on the potential sample periodic extension hypothesis that enables model training and detection, can be efficiently accomplished through FFT. However, real background information is not modeled during the total learning process. The background-aware correlation filter (BACF) tracking algorithm uses a binary matrix to acquire real positive and negative samples using a dense sampling method to model the targets appearance. However, the BACF algorithm does not consider temporal and spatial consistency information, and when a target undergoes an abrupt change, the learned correlation filter will drift to the background. To solve this problem, in this paper, we introduce temporal and spatial consistency constraints into the baseline BACF framework and propose a learning temporal-spatial consistency correlation filter (TSCF) tracking algorithm. This enables the correlation filter to learn to adapt to the appearance of mutation between successive frames. The temporal consistency constraint smooths the multi-channel correlation filter in the time series, and the spatial consistency constraint smooths the multi-channel correlation filter in spatial distribution, thus making the energy distribution more uniform of the correlation filter learned. In this paper, the TSCF model has closed solutions and the conjugate gradient descent method is used to approximate the optimal solution of a system of closed solutions. The optimization process can then be transformed into the Fourier domain using cyclic matrix properties to quickly obtain a solution, which effectively reduces the cost of calculating large matrices. In this paper, our TSCF algorithm increases distance precision by 5.5$%$ and raises the AUC by 4.3$%$ compared to the baseline BACF algorithm on the TB100 public database. The distance precision achieves 0.879 and the AUC reaches 0.663 on the TB100 database making use of only hand-crafted features. The TSCF algorithm proposed in this paper can be applied to challenging conditions such as short time occlusion, out-of-plane rotation, in-plane rotation, and so on, thus demonstrating its robustness and effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.