Abstract

Short-term synaptic plasticity has been proposed as a way for cortical neurons to process temporal information. We present a model network that uses short-term plasticity to implement a temporal clustering algorithm. The model's facilitory synapses learn temporal signals drawn from mixtures of nonlinear processes. Units in the model correspond to populations of cortical pyramidal cells arranged in columns; each column consists of neurons with similar spatiotemporal receptive fields. Clustering is based on mutual inhibition similar to Kohonen's SOMs. A generalized expectation maximization (GEM) algorithm, guaranteed to increase model likelihood with each iteration, learns the synaptic parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.