Abstract
One of the most important issues in Adaptive and Intelligent Educational Systems (AIES) is to define effective pedagogical policies for tutoring students according to their needs. This paper proposes to use Reinforcement Learning (RL) in the pedagogical module of an educational system so that the system learns automatically which is the best pedagogical policy for teaching students. One of the main characteristics of this approach is its ability to improve the pedagogical policy based only on acquired experience with other students with similar learning characteristics. In this paper we study the learning performance of the educational system through three important issues. Firstly, the learning convergence towards accurate pedagogical policies. Secondly, the role of exploration/exploitation strategies in the application of RL to AIES. Finally, a method for reducing the training phase of the AIES.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.