Abstract
Existing dimensionality reduction (DR) techniques such as principal component analysis (PCA) and its variants are not suitable for target class mining due to the negligence of unique statistical properties of class-of-interest (CoI) samples. Conventionally, these approaches utilize higher or lower eigenvalued principal components (PCs) for data transformation; but the higher eigenvalued PCs may split the target class, whereas lower eigenvalued PCs do not contribute significant information and wrong selection of PCs leads to performance degradation. Considering these facts, the present research offers a novel target class-guided feature extraction method. In this approach, initially, the eigendecomposition is performed on variance–covariance matrix of only the target class samples, where the higher- and lower-valued eigenvectors are rejected via statistical analysis, and the selected eigenvectors are utilized to extract the most promising feature subspace. The extracted feature-subset gives a more tighter description of the CoI with enhanced associativity among target class samples and ensures the strong separation from nontarget class samples. One-class support vector machine (OCSVM) is evaluated to validate the performance of learned features. To obtain optimized values of hyperparameters of OCSVM a novel [Formula: see text]-ary search-based autonomous method is also proposed. Exhaustive experiments with a wide variety of datasets are performed in feature-space (original and reduced) and eigenspace (obtained from original and reduced features) to validate the performance of the proposed approach in terms of accuracy, precision, specificity and sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.