Abstract
Subjectivity in natural language refers to aspects of language used to express opinions, evaluations, and speculations. There are numerous natural language processing applications for which subjectivity analysis is relevant, including information extraction and text categorization. The goal of this work is learning subjective language from corpora. Clues of subjectivity are generated and tested, including low-frequency words, collocations, and adjectives and verbs identified using distributional similarity. The features are also examined working together in concert. The features, generated from different data sets using different procedures, exhibit consistency in performance in that they all do better and worse on the same data sets. In addition, this article shows that the density of subjectivity clues in the surrounding context strongly affects how likely it is that a word is subjective, and it provides the results of an annotation study assessing the subjectivity of sentences with high-density features. Finally, the clues are used to perform opinion piece recognition (a type of text categorization and genre detection) to demonstrate the utility of the knowledge acquired in this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.