Abstract
In real-world environments, human speech is usually distorted by both reverberation and background noise, which have negative effects on speech intelligibility and speech quality. They also cause performance degradation in many speech technology applications, such as automatic speech recognition. Therefore, the dereverberation and denoising problems must be dealt with in daily listening environments. In this paper, we propose to perform speech dereverberation using supervised learning, and the supervised approach is then extended to address both dereverberation and denoising. Deep neural networks are trained to directly learn a spectral mapping from the magnitude spectrogram of corrupted speech to that of clean speech. The proposed approach substantially attenuates the distortion caused by reverberation, as well as background noise, and is conceptually simple. Systematic experiments show that the proposed approach leads to significant improvements of predicted speech intelligibility and quality, as well as automatic speech recognition in reverberant noisy conditions. Comparisons show that our approach substantially outperforms related methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.