Abstract

Three-dimensional (3D) convolutional networks have been proven to be able to explore spatial context and spectral information simultaneously for super-resolution (SR). However, such kind of network can’t be practically designed very ‘deep’ due to the long training time and GPU memory limitations involved in 3D convolution. Instead, in this paper, spatial context and spectral information in hyperspectral images (HSIs) are explored using Two-dimensional (2D) and One-dimenional (1D) convolution, separately. Therefore, a novel 2D-1D generative adversarial network architecture (2D-1D-HSRGAN) is proposed for SR of HSIs. Specifically, the generator network consists of a spatial network and a spectral network, in which spatial network is trained with the least absolute deviations loss function to explore spatial context by 2D convolution and spectral network is trained with the spectral angle mapper (SAM) loss function to extract spectral information by 1D convolution. Experimental results over two real HSIs demonstrate that the proposed 2D-1D-HSRGAN clearly outperforms several state-of-the-art algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.