Abstract
Many multimedia content-based retrieval systems allow query formulation with the user setting the relative importance of features (e.g., color, texture, shape, etc.) to mimic the user's perception of similarity. However, the systems do not modify their similarity matching functions, which are defined during the system development. We present a neural network-based learning algorithm for adapting the similarity matching function toward the user's query preference based on his/her relevance feedback. The relevance feedback is given as ranking errors (misranks) between the retrieved and desired lists of multimedia objects. The algorithm is demonstrated for facial image retrieval using the NIST Mugshot Identification Database with encouraging results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.