Abstract

As the Internet grows explosively, search engines play a more and more important role for users in effectively accessing online information. Recently, it has been recognized that a query is often triggered by a search task that the user wants to accomplish. Similarly, many web pages are specifically designed to help accomplish a certain task. Therefore, learning hidden tasks behind queries and web pages can help search engines return the most useful web pages to users by task matching. For instance, the search task that triggers query thinkpad T410 broken is to maintain a computer, and it is desirable for a search engine to return the Lenovo troubleshooting page on the top of the list. However, existing search engine technologies mainly focus on topic detection or relevance ranking, which are not able to predict the task that triggers a query and the task a web page can accomplish. In this paper, we propose to simultaneously classify queries and web pages into the popular search tasks by exploiting their content together with click-through logs. Specifically, we construct a taskoriented heterogeneous graph among queries and web pages. Each pair of objects in the graph are linked together as long as they potentially share similar search tasks. A novel graph-based regularization algorithm is designed for search task prediction by leveraging the graph. Extensive experiments in real search log data demonstrate the effectiveness of our method over state-of-the-art classifiers, and the search performance can be significantly improved by using the task prediction results as additional information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.