Abstract

This paper proposes a method to encourage safety in Model Predictive Control (MPC)-based Reinforcement Learning (RL) via Gaussian Process (GP) regression. The framework consists of 1) a parametric MPC scheme that is employed as model-based controller with approximate knowledge on the real system's dynamics, 2) an episodic RL algorithm tasked with adjusting the MPC parametrization in order to increase its performance, and 3) GP regressors used to estimate, directly from data, constraints on the MPC parameters capable of predicting, up to some probability, whether the parametrization is likely to yield a safe or unsafe policy. These constraints are then enforced onto the RL updates in an effort to enhance the learning method with a probabilistic safety mechanism. Compared to other recent publications combining safe RL with MPC, our method does not require further assumptions on, e.g., the prediction model in order to retain computational tractability. We illustrate the results of our method in a numerical example on the control of a quadrotor drone in a safety-critical environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.