Abstract

Point clouds are an increasingly relevant geometric data type but they are often corrupted by noise and affected by the presence of outliers. We propose a deep learning method that can simultaneously denoise a point cloud and remove outliers in a single model. The core of the proposed method is a graph-convolutional neural network able to efficiently deal with the irregular domain and the permutation invariance problem typical of point clouds. The network is fully-convolutional and can build complex hierarchies of features by dynamically constructing neighborhood graphs from similarity among the high-dimensional feature representations of the points. The proposed approach outperforms state-of-the-art denoising methods showing robust performance in the challenging setup of high noise levels and in presence of structured noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call