Abstract

Abstract We investigate the problem of learning a water quality model (BOD-DO model) from given data. Assuming that all parameters in the model are constants, we reformulate the problem as a system of linear equations for the unknown terms. Since in practice the system is often under-determined or over-determined and the observed data are noisy, we use an $l^{1}$-weighted regularization method to find a stable approximate solution. Then, Nesterov’s algorithm is used to solve the regularized problem. Learning models with variable coefficients are also discussed. Numerical examples show that our approach works well with noisy data and has the ability to learn the BOD-DO model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.