Abstract
Face attributes are interesting due to their detailed description of human faces. Unlike prior researches working on attribute prediction, we address an inverse and more challenging problem called face attribute manipulation which aims at modifying a face image according to a given attribute value. Instead of manipulating the whole image, we propose to learn the corresponding residual image defined as the difference between images before and after the manipulation. In this way, the manipulation can be operated efficiently with modest pixel modification. The framework of our approach is based on the Generative Adversarial Network. It consists of two image transformation networks and a discriminative network. The transformation networks are responsible for the attribute manipulation and its dual operation and the discriminative network is used to distinguish the generated images from real images. We also apply dual learning to allow transformation networks to learn from each other. Experiments show that residual images can be effectively learned and used for attribute manipulations. The generated images remain most of the details in attribute-irrelevant areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.